
MATH 245 S24, Exam 3 Solutions

1. Carefully define the following terms: symmetric difference, union.
Let S, T be sets. Their symmetric difference is the set given by {x : (x ∈ S ∧ x /∈ T ) ∨ (x ∈
T ∧ x /∈ S)}. Their union is the set given by {x : x ∈ S ∨ x ∈ T}.

2. Carefully define the following terms: disjoint, antisymmetric
Two sets S, T are disjoint if S ∩ T = ∅. Let S be a set. Relation R on S is antisymmetric if
it satisfies the property ∀x, y ∈ S, (xRy ∧ yRx)→ x = y.

3. Find a partition of N into infinitely many parts, each of a different cardinality (from each other).
You need not prove it is a partition, just find it.

Many solutions are possible; here is one: {S1, S2, S3, S4, . . .}, where S1 = {1}, S2 = {2, 3}, S3 =

{4, 5, 6}, S4 = {7, 8, 9, 10}, . . .. That is, Sn = {x ∈ N : n(n−1)
2

< x ≤ n(n+1)
2
}. You need not

find a closed form for Sn like this, but if you don’t your pattern needs to be very clear. This
is a partition because each element of N is in exactly one such part Sn. Also |Sn| = n, so they
are all of different cardinalities.

4. Let R = {x ∈ Z : ∃y ∈ Z, x = 2y}, S = {x ∈ Z : ∃y ∈ Z, x = 6y}, T = {x ∈ Z : ∃y ∈ Z, x =
3y}. Prove or disprove that R ∩ S = T .

The statement is false, and to disprove we need an explicit counterexample, some x? ∈ T with
x? /∈ R ∩ S. Many are possible, I choose x? = 3. 3 ∈ T because 3 = 3 · 1 and 1 ∈ Z. Now,
3 /∈ R since 3 = 2y only has solution y = 3/2 which is not an integer. Since 3 /∈ R, also
3 /∈ R∩S. [Proof 1: If 3 ∈ R∩S, then 3 ∈ R∧ 3 ∈ S, and by simplification 3 ∈ R, which is a
contradiction.] [Proof 2: By addition 3 /∈ R ∨ 3 /∈ S. By De Morgan’s Law ¬(3 ∈ R ∧ 3 ∈ S),
so ¬3 ∈ R ∩ S, so 3 /∈ R ∩ S.]

5. Let S, T be sets, and suppose that S \ T = T \ S. Prove that S ⊆ T .
METHOD 1: Let x ∈ S. We now have two cases, based on whether or not x ∈ T . If x ∈ T ,
we are happy and done. If instead x /∈ T , then by conjunction x ∈ S ∧ x /∈ T , so x ∈ S \ T .
Since S \ T = T \ S, in fact x ∈ T \ S. Hence x ∈ T ∧ x /∈ S, and by simplification x ∈ T .
In both cases x ∈ T . ALTERNATE ENDING: Once we get x ∈ T in the second case, we
combine with x /∈ T (which holds in the second case), to conclude that the second case never
happens.

METHOD 2: Let x ∈ S. We will prove x ∈ T by contradiction. So, we suppose x /∈ T . By
conjunction x ∈ S ∧ x /∈ T , so x ∈ S \ T . Since S \ T = T \ S, in fact x ∈ T \ S. Hence
x ∈ T ∧ x /∈ S, and by simplification x /∈ S. This is a contradiction, proving x ∈ T .

METHOD 3 (found by a student): Let x ∈ S. By addition, x ∈ S ∨ x /∈ T . By double
negation, (¬x /∈ S) ∨ (¬x ∈ T ). By De Morgan’s Law, ¬(x /∈ S ∧ x ∈ T ), and hence
¬x ∈ (T \S). Because T \S = S \T , ¬x ∈ (S \T ). Hence ¬(x ∈ S∧x /∈ T ). By De Morgan’s
Law again, x /∈ S ∨ x ∈ T . By disjunctive syllogism with x ∈ S, x ∈ T .



6. Let A,B be nonempty sets, and suppose that A×B ⊆ B × A. Prove that A = B.
First, let x ∈ A. Since B is nonempty, let y ∈ B. We have (x, y) ∈ A × B, and since
A×B = B × A, also (x, y) ∈ B × A. So x ∈ B. This proves A ⊆ B.

Second, let x ∈ B. Since A is nonempty, let z ∈ A. We have (z, x) ∈ A × B, and since
A×B = B × A, also (z, x) ∈ B × A. So, x ∈ A. This proves B ⊆ A.

For full credit, a solution must use the hypothesis that A,B are nonempty.

7. Let S, U be sets with S ⊆ U . Prove that S ⊆ (Sc)c.
NOTE: This is part of Theorem 9.2. Do not use this theorem to prove itself!
METHOD 1: Let x ∈ S. We apply double negation to get ¬¬x ∈ S. We apply addition to
get (¬x ∈ U) ∨ (¬(¬x ∈ S)). We apply De Morgan’s Law for propositions (Thm 2.11) in the
reverse direction from usual to get ¬(x ∈ U ∧ (¬x ∈ S)). Hence we get ¬x ∈ Sc. We combine
x ∈ S with S ⊆ U to get x ∈ U . By conjunction we get x ∈ U ∧ ¬(x ∈ Sc). Finally we get
x ∈ (Sc)c.

METHOD 2 (found by a student): Let x ∈ S. Because S ⊆ U we have x ∈ U . By conjunction
x ∈ U ∧ x ∈ S. By addition (x ∈ U ∧ x ∈ S)∨ (x ∈ U ∧ x /∈ U). By distributivity (in reverse)
x ∈ U ∧ (x ∈ S ∨ x /∈ U). By double negation x ∈ U ∧ (¬x /∈ S ∨ ¬x ∈ U). By De Morgan’s
Law x ∈ U ∧ ¬(x /∈ S ∧ x ∈ U) and hence x ∈ U ∧ ¬(x ∈ U \ S). Thus x ∈ U ∧ ¬x ∈ Sc.
Hence x ∈ U \ Sc, and so x ∈ (Sc)c.

For problems 8-10, let S = {a}, V = 2S, and W = 2V . Define relation R on W via R =
{(x, y) : x ⊆ y}. Each of these problems has two parts.

8. Draw the digraph for relation R. Also, determine |R|.
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Note that V = {{}, {a}} = {∅, S} and W = {∅, {∅}, {S}, {∅, S}}. We
have |R| = 9, as there are nine directed edges. It’s important to keep
clear the difference between {} = ∅ and {{}} = {∅}!.

9. Prove or disprove that R is reflexive. Also, prove or disprove that R is symmetric.
R is reflexive, because x ⊆ x for all sets x, and in particular for all sets x ∈ W . R is not
symmetric; to disprove requires an explicit x, y ∈ W such that (x, y) ∈ R but (y, x) /∈ R. Five
choices are available, I will pick x = {∅}, y = {∅, S}. Note that (x, y) ∈ R (there is only one
element of x, namely ∅, and it is an element of y) and (y, x) /∈ R (since S ∈ y and S /∈ x, so
y * x).

10. Let Rsymm denote the symmetric closure of R. Draw the digraph for relation Rsymm. Also,
prove or disprove that Rsymm is transitive.
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Rsymm has every possible edge, except for the two between {∅} and
{S}. It is not transitive, and to prove this requires using one of those
missing edges in constructing an explicit counterexample. Here is
one possible way: take x = {S}, y = {∅, S}, z = {∅}. We have
(x, y) ∈ Rsymm and (y, z) ∈ Rsymm but (x, z) /∈ Rsymm.


