## MATH 245 S24, Exam 3 Solutions

- 1. Carefully define the following terms: symmetric difference, union. Let S, T be sets. Their symmetric difference is the set given by  $\{x : (x \in S \land x \notin T) \lor (x \in T \land x \notin S)\}$ . Their union is the set given by  $\{x : x \in S \lor x \in T\}$ .
- 2. Carefully define the following terms: disjoint, antisymmetric Two sets S, T are disjoint if  $S \cap T = \emptyset$ . Let S be a set. Relation R on S is antisymmetric if it satisfies the property  $\forall x, y \in S$ ,  $(xRy \wedge yRx) \rightarrow x = y$ .
- 3. Find a partition of N into infinitely many parts, each of a different cardinality (from each other). You need not prove it is a partition, just find it.

Many solutions are possible; here is one:  $\{S_1, S_2, S_3, S_4, \ldots\}$ , where  $S_1 = \{1\}, S_2 = \{2, 3\}, S_3 = \{4, 5, 6\}, S_4 = \{7, 8, 9, 10\}, \ldots$  That is,  $S_n = \{x \in \mathbb{N} : \frac{n(n-1)}{2} < x \leq \frac{n(n+1)}{2}\}$ . You need not find a closed form for  $S_n$  like this, but if you don't your pattern needs to be very clear. This is a partition because each element of  $\mathbb{N}$  is in exactly one such part  $S_n$ . Also  $|S_n| = n$ , so they are all of different cardinalities.

4. Let  $R = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, x = 2y\}, S = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, x = 6y\}, T = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, x = 3y\}$ . Prove or disprove that  $R \cap S = T$ .

The statement is false, and to disprove we need an explicit counterexample, some  $x^* \in T$  with  $x^* \notin R \cap S$ . Many are possible, I choose  $x^* = 3$ .  $3 \in T$  because  $3 = 3 \cdot 1$  and  $1 \in \mathbb{Z}$ . Now,  $3 \notin R$  since 3 = 2y only has solution y = 3/2 which is not an integer. Since  $3 \notin R$ , also  $3 \notin R \cap S$ . [Proof 1: If  $3 \in R \cap S$ , then  $3 \in R \wedge 3 \in S$ , and by simplification  $3 \in R$ , which is a contradiction.] [Proof 2: By addition  $3 \notin R \vee 3 \notin S$ . By De Morgan's Law  $\neg(3 \in R \wedge 3 \in S)$ , so  $\neg 3 \in R \cap S$ , so  $3 \notin R \cap S$ .]

## 5. Let S, T be sets, and suppose that $S \setminus T = T \setminus S$ . Prove that $S \subseteq T$ .

METHOD 1: Let  $x \in S$ . We now have two cases, based on whether or not  $x \in T$ . If  $x \in T$ , we are happy and done. If instead  $x \notin T$ , then by conjunction  $x \in S \land x \notin T$ , so  $x \in S \setminus T$ . Since  $S \setminus T = T \setminus S$ , in fact  $x \in T \setminus S$ . Hence  $x \in T \land x \notin S$ , and by simplification  $x \in T$ . In both cases  $x \in T$ . ALTERNATE ENDING: Once we get  $x \in T$  in the second case, we combine with  $x \notin T$  (which holds in the second case), to conclude that the second case never happens.

METHOD 2: Let  $x \in S$ . We will prove  $x \in T$  by contradiction. So, we suppose  $x \notin T$ . By conjunction  $x \in S \land x \notin T$ , so  $x \in S \setminus T$ . Since  $S \setminus T = T \setminus S$ , in fact  $x \in T \setminus S$ . Hence  $x \in T \land x \notin S$ , and by simplification  $x \notin S$ . This is a contradiction, proving  $x \in T$ .

METHOD 3 (found by a student): Let  $x \in S$ . By addition,  $x \in S \lor x \notin T$ . By double negation,  $(\neg x \notin S) \lor (\neg x \in T)$ . By De Morgan's Law,  $\neg (x \notin S \land x \in T)$ , and hence  $\neg x \in (T \setminus S)$ . Because  $T \setminus S = S \setminus T$ ,  $\neg x \in (S \setminus T)$ . Hence  $\neg (x \in S \land x \notin T)$ . By De Morgan's Law again,  $x \notin S \lor x \in T$ . By disjunctive syllogism with  $x \in S$ ,  $x \in T$ . 6. Let A, B be nonempty sets, and suppose that  $A \times B \subseteq B \times A$ . Prove that A = B. First, let  $x \in A$ . Since B is nonempty, let  $y \in B$ . We have  $(x, y) \in A \times B$ , and since  $A \times B = B \times A$ , also  $(x, y) \in B \times A$ . So  $x \in B$ . This proves  $A \subseteq B$ . Second, let  $x \in B$ . Since A is nonempty, let  $z \in A$ . We have  $(z, x) \in A \times B$ , and since  $A \times B = B \times A$ , also  $(z, x) \in B \times A$ . So,  $x \in A$ . This proves  $B \subseteq A$ .

For full credit, a solution must use the hypothesis that A, B are nonempty.

7. Let S, U be sets with  $S \subseteq U$ . Prove that  $S \subseteq (S^c)^c$ .

NOTE: This is part of Theorem 9.2. Do not use this theorem to prove itself!

METHOD 1: Let  $x \in S$ . We apply double negation to get  $\neg \neg x \in S$ . We apply addition to get  $(\neg x \in U) \lor (\neg (\neg x \in S))$ . We apply De Morgan's Law for propositions (Thm 2.11) in the reverse direction from usual to get  $\neg(x \in U \land (\neg x \in S))$ . Hence we get  $\neg x \in S^c$ . We combine  $x \in S$  with  $S \subseteq U$  to get  $x \in U$ . By conjunction we get  $x \in U \land \neg(x \in S^c)$ . Finally we get  $x \in (S^c)^c$ .

METHOD 2 (found by a student): Let  $x \in S$ . Because  $S \subseteq U$  we have  $x \in U$ . By conjunction  $x \in U \land x \in S$ . By addition  $(x \in U \land x \in S) \lor (x \in U \land x \notin U)$ . By distributivity (in reverse)  $x \in U \land (x \in S \lor x \notin U)$ . By double negation  $x \in U \land (\neg x \notin S \lor \neg x \in U)$ . By De Morgan's Law  $x \in U \land \neg (x \notin S \land x \in U)$  and hence  $x \in U \land \neg (x \in U \setminus S)$ . Thus  $x \in U \land \neg x \in S^c$ . Hence  $x \in U \setminus S^c$ , and so  $x \in (S^c)^c$ .

For problems 8-10, let  $S = \{a\}, V = 2^S$ , and  $W = 2^V$ . Define relation R on W via R = $\{(x, y) : x \subseteq y\}$ . Each of these problems has two parts.

Draw the digraph for relation R. Also, determine |R|. 8.



Note that  $V = \{\{\}, \{a\}\} = \{\emptyset, S\}$  and  $W = \{\emptyset, \{\emptyset\}, \{S\}, \{\emptyset, S\}\}$ . We have |R| = 9, as there are nine directed edges. It's important to keep clear the difference between  $\{\} = \emptyset$  and  $\{\{\}\} = \{\emptyset\}!$ .

- 9. Prove or disprove that R is reflexive. Also, prove or disprove that R is symmetric. R is reflexive, because  $x \subseteq x$  for all sets x, and in particular for all sets  $x \in W$ . R is not symmetric; to disprove requires an explicit  $x, y \in W$  such that  $(x, y) \in R$  but  $(y, x) \notin R$ . Five choices are available, I will pick  $x = \{\emptyset\}, y = \{\emptyset, S\}$ . Note that  $(x, y) \in R$  (there is only one element of x, namely  $\emptyset$ , and it is an element of y) and  $(y, x) \notin R$  (since  $S \in y$  and  $S \notin x$ , so  $y \not\subseteq x$ ).
- 10. Let  $R_{summ}$  denote the symmetric closure of R. Draw the digraph for relation  $R_{summ}$ . Also, prove or disprove that  $R_{symm}$  is transitive.



 $R_{summ}$  has every possible edge, except for the two between  $\{\emptyset\}$  and  $\{S\}$ . It is not transitive, and to prove this requires using one of those missing edges in constructing an explicit counterexample. Here is one possible way: take  $x = \{S\}, y = \{\emptyset, S\}, z = \{\emptyset\}$ . We have  $(x, y) \in R_{symm}$  and  $(y, z) \in R_{symm}$  but  $(x, z) \notin R_{symm}$ .