MATH 245 S24, Exam 3 Solutions

1. Carefully define the following terms: symmetric difference, union.

Let S, T be sets. Their symmetric difference is the set given by $\{x:(x \in S \wedge x \notin T) \vee(x \in$ $T \wedge x \notin S)\}$. Their union is the set given by $\{x: x \in S \vee x \in T\}$.
2. Carefully define the following terms: disjoint, antisymmetric

Two sets S, T are disjoint if $S \cap T=\emptyset$. Let S be a set. Relation R on S is antisymmetric if it satisfies the property $\forall x, y \in S,(x R y \wedge y R x) \rightarrow x=y$.
3. Find a partition of \mathbb{N} into infinitely many parts, each of a different cardinality (from each other). You need not prove it is a partition, just find it.
Many solutions are possible; here is one: $\left\{S_{1}, S_{2}, S_{3}, S_{4}, \ldots\right\}$, where $S_{1}=\{1\}, S_{2}=\{2,3\}, S_{3}=$ $\{4,5,6\}, S_{4}=\{7,8,9,10\}, \ldots$. That is, $S_{n}=\left\{x \in \mathbb{N}: \frac{n(n-1)}{2}<x \leq \frac{n(n+1)}{2}\right\}$. You need not find a closed form for S_{n} like this, but if you don't your pattern needs to be very clear. This is a partition because each element of \mathbb{N} is in exactly one such part S_{n}. Also $\left|S_{n}\right|=n$, so they are all of different cardinalities.
4. Let $R=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=2 y\}, S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=6 y\}, T=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=$ $3 y\}$. Prove or disprove that $R \cap S=T$.
The statement is false, and to disprove we need an explicit counterexample, some $x^{\star} \in T$ with $x^{\star} \notin R \cap S$. Many are possible, I choose $x^{\star}=3.3 \in T$ because $3=3 \cdot 1$ and $1 \in \mathbb{Z}$. Now, $3 \notin R$ since $3=2 y$ only has solution $y=3 / 2$ which is not an integer. Since $3 \notin R$, also $3 \notin R \cap S$. [Proof 1: If $3 \in R \cap S$, then $3 \in R \wedge 3 \in S$, and by simplification $3 \in R$, which is a contradiction.] [Proof 2: By addition $3 \notin R \vee 3 \notin S$. By De Morgan's Law $\neg(3 \in R \wedge 3 \in S)$, so $\neg 3 \in R \cap S$, so $3 \notin R \cap S$.]
5. Let S, T be sets, and suppose that $S \backslash T=T \backslash S$. Prove that $S \subseteq T$.

METHOD 1: Let $x \in S$. We now have two cases, based on whether or not $x \in T$. If $x \in T$, we are happy and done. If instead $x \notin T$, then by conjunction $x \in S \wedge x \notin T$, so $x \in S \backslash T$. Since $S \backslash T=T \backslash S$, in fact $x \in T \backslash S$. Hence $x \in T \wedge x \notin S$, and by simplification $x \in T$. In both cases $x \in T$. ALTERNATE ENDING: Once we get $x \in T$ in the second case, we combine with $x \notin T$ (which holds in the second case), to conclude that the second case never happens.
METHOD 2: Let $x \in S$. We will prove $x \in T$ by contradiction. So, we suppose $x \notin T$. By conjunction $x \in S \wedge x \notin T$, so $x \in S \backslash T$. Since $S \backslash T=T \backslash S$, in fact $x \in T \backslash S$. Hence $x \in T \wedge x \notin S$, and by simplification $x \notin S$. This is a contradiction, proving $x \in T$.
METHOD 3 (found by a student): Let $x \in S$. By addition, $x \in S \vee x \notin T$. By double negation, $(\neg x \notin S) \vee(\neg x \in T)$. By De Morgan's Law, $\neg(x \notin S \wedge x \in T)$, and hence $\neg x \in(T \backslash S)$. Because $T \backslash S=S \backslash T, \neg x \in(S \backslash T)$. Hence $\neg(x \in S \wedge x \notin T)$. By De Morgan's Law again, $x \notin S \vee x \in T$. By disjunctive syllogism with $x \in S, x \in T$.
6. Let A, B be nonempty sets, and suppose that $A \times B \subseteq B \times A$. Prove that $A=B$.

First, let $x \in A$. Since B is nonempty, let $y \in B$. We have $(x, y) \in A \times B$, and since $A \times B=B \times A$, also $(x, y) \in B \times A$. So $x \in B$. This proves $A \subseteq B$.
Second, let $x \in B$. Since A is nonempty, let $z \in A$. We have $(z, x) \in A \times B$, and since $A \times B=B \times A$, also $(z, x) \in B \times A$. So, $x \in A$. This proves $B \subseteq A$.
For full credit, a solution must use the hypothesis that A, B are nonempty.
7. Let S, U be sets with $S \subseteq U$. Prove that $S \subseteq\left(S^{c}\right)^{c}$.

NOTE: This is part of Theorem 9.2. Do not use this theorem to prove itself!
METHOD 1: Let $x \in S$. We apply double negation to get $\neg \neg x \in S$. We apply addition to get $(\neg x \in U) \vee(\neg(\neg x \in S))$. We apply De Morgan's Law for propositions (Thm 2.11) in the reverse direction from usual to get $\neg(x \in U \wedge(\neg x \in S))$. Hence we get $\neg x \in S^{c}$. We combine $x \in S$ with $S \subseteq U$ to get $x \in U$. By conjunction we get $x \in U \wedge \neg\left(x \in S^{c}\right)$. Finally we get $x \in\left(S^{c}\right)^{c}$.
METHOD 2 (found by a student): Let $x \in S$. Because $S \subseteq U$ we have $x \in U$. By conjunction $x \in U \wedge x \in S$. By addition $(x \in U \wedge x \in S) \vee(x \in U \wedge x \notin U)$. By distributivity (in reverse) $x \in U \wedge(x \in S \vee x \notin U)$. By double negation $x \in U \wedge(\neg x \notin S \vee \neg x \in U)$. By De Morgan's Law $x \in U \wedge \neg(x \notin S \wedge x \in U)$ and hence $x \in U \wedge \neg(x \in U \backslash S)$. Thus $x \in U \wedge \neg x \in S^{c}$. Hence $x \in U \backslash S^{c}$, and so $x \in\left(S^{c}\right)^{c}$.

For problems 8-10, let $S=\{a\}, V=2^{S}$, and $W=2^{V}$. Define relation R on W via $R=$ $\{(x, y): x \subseteq y\}$. Each of these problems has two parts.
8. Draw the digraph for relation R. Also, determine $|R|$.

Note that $V=\{\{ \},\{a\}\}=\{\emptyset, S\}$ and $W=\{\emptyset,\{\emptyset\},\{S\},\{\emptyset, S\}\}$. We have $|R|=9$, as there are nine directed edges. It's important to keep clear the difference between $\}=\emptyset$ and $\{\}\}=\{\emptyset\}$!.
9. Prove or disprove that R is reflexive. Also, prove or disprove that R is symmetric.
R is reflexive, because $x \subseteq x$ for all sets x, and in particular for all sets $x \in W . R$ is not symmetric; to disprove requires an explicit $x, y \in W$ such that $(x, y) \in R$ but $(y, x) \notin R$. Five choices are available, I will pick $x=\{\emptyset\}, y=\{\emptyset, S\}$. Note that $(x, y) \in R$ (there is only one element of x, namely \emptyset, and it is an element of y) and ($y, x) \notin R$ (since $S \in y$ and $S \notin x$, so $y \nsubseteq x)$.
10. Let $R_{\text {symm }}$ denote the symmetric closure of R. Draw the digraph for relation $R_{\text {symm }}$. Also, prove or disprove that $R_{\text {symm }}$ is transitive.

$R_{s y m m}$ has every possible edge, except for the two between $\{\emptyset\}$ and $\{S\}$. It is not transitive, and to prove this requires using one of those missing edges in constructing an explicit counterexample. Here is one possible way: take $x=\{S\}, y=\{\emptyset, S\}, z=\{\emptyset\}$. We have $(x, y) \in R_{\text {symm }}$ and $(y, z) \in R_{\text {symm }}$ but $(x, z) \notin R_{\text {symm }}$.

